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* All questions will be addressed at the end of the presentation.
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What is an outbreak?

 Many different definitions
* Here are some examples:



What is an outbreak?

1. Anincidence higher than what is expected
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What is an outbreak?

1. Anincidence higher than what is expected
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What is an outbreak?
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What is an outbreak?

3. A number of confirmed cases where the
infection is from a local source



What is an outbreak?

4. A change from constant level to increasing
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Statistical Surveillance

* Online detection

 Evaluate information each time a new
observation is made

 Compare the following:



Statistical Surveillance
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Now an outbreak has started!




OutbreakP

* We developed a semiparametric method for
outbreak detection

* Relies on the shape of the curve

* Likelihood ratio between restriction of
increasing level and constant level
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Measures of performance

We want a method that

— Detects outbreaks without small delays

— Gives few false alarms

Balance between few false alarm and delay
— Faster detection -> more false alarms

— More accurate detection -> longer delay

We need measures to evaluate this!

Multivariate surveillance needs special measures

Frisén, M., E. Andersson, et al. (2010). "Evaluation of Multivariate
Surveillance." Journal of Applied Statistics 37(12): 2089-2100.




Measures of performance

Notation:
—t, - time of alarm
— 1T - time of outbreak

Conditional Expected Delay, CED
CED(r)=E[tA—z'|tA =7
Average Run Length
ARD = E[t,|T =]

Skewed distribution
— Median Run LengthO, MRL°



Measures of performance

* Predictive Value, PV

t

Z(P(tA =t|T=i)P(r =i))
PV(t)=P(r=t|t,=t)=— =
Z<P(tA =t|z=0)P@=0))+P(t,=t|T>)P(T>1)

e Or

p (true alarm at/before t)

| ttist =
P (a arimn at t1s rue) p (true alarm at/before t) +p (false alarm after t)
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Conditional Expected Delay
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Multivariate surveillance

 Monitoring of p processes instead of one

 What to detect?
— Time of first change in any process
— Time of change in a specific process

— Time of change in at least n processes



Updated Measures of performance

* Notation:
—t, - time of alarm
— 1. - time of first outbreak

Conditional Expected Delay, CED
CED(q, Tyy s T )=E[tA—rmin

> Up

* Predictive Value, PV

tA = 7/—rnin ]

t

> (Pt =17, = )P(E, =)

PV(t)=P(z,,, st|t,=1)= t
E(P(t/l =t|Tmin =i)P(1”min =l))+P(tA =t|Tmin >t)P(Tmin >t)
i=1



Multivariate surveillance

* Different approaches:
— Parallel univariate surveillance
— Reduction of dimension

e Reduction to a scalar
— Vector Accumulation
— Using full multivariate likelihood

e Can be quite complex



The sufficiency principle

* A sufficient statistic captures all the

information about a parameter 6 available in
a sample

* Inference regarding 6 should be the same for

the same value of an observed statistic
T(X)=t(x)

* Assumptions important!



Multivariate surveillance

Data reduction to reduce complexity
Sufficient reduction — no information is lost

We showed that the sum is sufficient for
surveillance in the one parameter exponential

family

The semiparametric method further
developed



Application of the sufficiency principle
to Statistical surveillance

* Known time-lag between the processes
* Processes iid given time and lag
— Same baseline, same shape

e Sufficient reduction into a univariate statistic
may be found



Application of the sufficiency principle
to Statistical surveillance

* For pindependent processes in the one-parameter
exponential family a sufficient reduction is shown
for step changes in

— Frisén, M., E. Andersson, et al. (2011). "Sufficient reduction
in multivariate surveillance." Communications in Statistics -

Theory and Methods 40(10): 1821-1838.

* For gradual (i.e. non-decreasing) changes

— Schioler, L. and M. Frisén (2012). "Multivariate outbreak
detection." Journal of Applied Statistics 39(2): 223-242.




Parallel vs Reduction
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Parallel vs Reduction
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Parallel vs Reduction
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Influenza data from Sweden

e Laboratory diagnosed influenza (LDI)
— Collected weekly from different laboratories
— Information on catchment area not available
— A city may not use same laboratory each year
— Different policies regarding testing



Data quality

e Laboratory diagnosed influenza data:
— Baseline uncertain
— Small number of cases, aggregation needed
— Starting time of outbreak differs
— Different severity of outbreak



Data quality

* However:
— Data for all years from 50% of laboratories
— Consistent reporting from large laboratories

— Laboratories relatively evenly distributed with
regards to population



Spatial information

* Regional information or other data sources
may be used to detect the outbreak earlier
* Time lag between regions?
— North to south

— East to west
— Other



Application to Swedish Influenza

 The Swedish influenza in general starts
one week earlier in the metropolitan
areas than in the rest of Sweden.

* Thus a sufficient reduction may be used
to detect the influenza earlier




180

160
140
120 -
100 H
80 1
60
40 A
20 A

0

160
140
120
100
80
60
40
20
0

40 44 48 52 4 8 12

00_01

Metropolitan

"""" Locality

01_02

140
120 -
100
80 -
60 -
40 -

20 A

0

40 44 48 52 4 8 12 16

140

04_05

120 -

100 -

80 A

60 -

40 A

20 -

16 20

06_07

40 44 48 52 4 8 12 16 20

0

40 44 48 52 4 8 12

80

16 20

07_08

70
60 -
50 -
40
30 -
20 -
10

0

iy e
LI B e

40 44 48 52 4 8 12

16 20

02_03

40 44 48 52 4 8 12

16 20

05_06

Yo\

40 44 48 52 4 8 12 16 20
08_09

180

160 -

140 -

120 -

100 - [\\

80 - JATE
A

60 - \
/A

40 1 |

20 - /J

(| S . w2
40 44 48 52 4 8 12 16 20



Surveillance of Regional Data

* Data reduction incorporating time lag used

e QOutbreaks detected at same time or earlier
than using the whole country



Thank you for listening!
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Part 1: General Remarks on Analytic Fusion of Evidence
* Concept
* Whatis taking so long? Obstacles
* Practical role of multivariate analytic methods

* Seeking evidenced-based validation without sufficient
evidence
* Role of simulation, historical signals, predictive models

* Many academic approaches in recent years—not enough
practical collaboration

Part 2: Bayesian Networks Applied to Multivariate Syndromic
Surveillance for the U.S. Department of Defense
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What is taking

Public health monitors with the system needs do not have
funding, time, manpower to design systems

— Widespread lack of sufficient human analysts/investigators
— Often responding to latest perceived crisis

Wide variation in situational awareness needs
Limited, temporary funding

Diverse professional cultures can hinder collaboration as much as
national, ethnic cultures

Need to discern and apply appropriate use of technology: it can’t
do everything

— Just because we can doesn’t mean we should

Data Availability: Need to protect patient privacy, proprietary
rights, and individual and collective intellectual property




Which statement most closely agrees with your perception?

1. Within the foreseeable future (say 20 years), machine learning will take over all
complex decision processes involving multiple sources of evidence.

2. Certain aspects of decision making and weighting of evidence can be left to
automation. The rest must remain up to the human decision maker.

3. Automated decision tools could play a useful advisory role in some situations.

4. Analytic tools can clarify data through statistical methods and data modeling but
are not appropriate for decision making.

5. What is needed is not analytics, but just faster, user-friendly, and streamlined
data visualization methods.




Numerous Analytic Approaches in Recent Years

Multiple Approaches, gradually converging:

Multivariate Time Series Models

* Lau E.H.Y, Cowling B.J., Ho L-M, Leung G.M., Optimizing Use of Multistream Influenza
Sentinel Surveillance Data, Emerg Infect Dis. Jul 2008; 14(7): 1154-1157. doi:
10.3201/eid1407.080060

Multivariate methods based on agent-based models

* X.liang, G. F. Cooper, A real-time temporal Bayesian architecture for event
surveillance and its application to patient-specific multiple disease outbreak detection,
Data Min. Knowl. Discov. 20 (3) (2010) 328-360.

Agent-based models: computational improvements

« Skvortsov A, Ristic B, Monitoring and prediction of an epidemic outbreak using
syndromic observations, Math. Biosci. (2012),

Spatiotemporal application of multivariate branching process model:

* Paul M, Held L, and Toschke AM, Multivariate modelling of infectious disease
surveillance data, Statistics in Medicine, Volume 27, Issue 29, pages 6250-6267, 20
December 2008

Bayesian shared component model framework, extending SCPO:
* Corberan-Vallet A, Prospective surveillance of multivariate spatial disease data, Stat
Methods Med Res. 2012 October ; 21(5): 457-477.

P



1. Multiple evidence sources should be used to clarify
surveillance picture, not obscure it

> Utility, effective role of new data sources derived from social media?

2. Requirements:

> Effective visualization tools are essential

> Transparency: epidemiologist users will not accept black-box output for
decision-making

- Analytic multivariate tools must be well explained, produce logical
outputs in canonical scenarios

> Manage data dropouts, other quality problems

> Appropriate weighting of clinical, syndromic, environmental evidence




Part 2: Bayesian Networks Applied to Multivariate
Syndromic Surveillance for the U.S. Department
of Defense

Howard Burkom, Yevgeniy Elbert,

Liane Ramac-Thomas, Christopher Cuellar
Johns Hopkins Applied Physics Laboratory
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Scope, Evidence Sources of DoD Surveillance

Concept: Bayesian Networks for Analytic Fusion
Implementation Summary
Recent Results

Discussion: validation and practical usage




From Separate Algorithms to Integrated

Decision Support for DoD Surveillance
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* Historical Dataset of 3.75 years, all US military treatment facilities
— Data Sources

Outpatient records, including ICD-9, chief complaints, demographic,
severity-related fields

Chemistry and Microbiology Laboratory test orders & results
Filled Prescriptions
— Data dates: 1360 continuous days, 10Jan2007 — 29Sep2010
e Data from 502 individual treatment facilities
— Including 289 hospitals and large clinics with all data sources
* Truth data: reported outbreaks in three clinical categories
— Influenza-like illness (ILI)
— Gastrointestinal illness (Gl)
— Febrile illness (Fever)

References:

[MSMR] Medical Surveillance Monthly Report, April 2012, Volume 19, Number 4,
http://www.afhsc.mil/viewMSMR?file=2012/v19 n04.pdf

[TRICARE] Defense Health Cost Assessment and Program Evaluation (DHCAPE), in the Office of the Assistant Secretary of Defense (Health
Affairs) (OASD/HA) (2012) Evaluation of the TRICARE Program: Fiscal Year 2012 Report to Congress.
http://www.tricare.mil/hpae/ docs/TRICARE2012 02 28v5.pdf.

[DHSS ESSENCE] http://www.health.mil/Military-Health-Topics/Technology/Decision-Support/Electronic-Surveillance-System-for-the-
Early-Notification-of-Community-based-Epidemics
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Instead of:

— how to model data effects of public health threats,
— how evidence sources are correlated,

— which data signals correspond to authentic events and
false alarms,

— how to analytically combine data from different, weighted
data sources,

We ask:

— how would an experienced health monitor make
investigation decisions given the luxury of examining all data
sources every day?




Method of combining information from the monitored
population

— Algorithm results from multiple data streams of varying
relevance (not raw data)

— More than a rule set: an analytic umbrella that can also
include report-based results, incomplete data updates,
other multivariate methods

Not Bayesian statistics in the sense of hierarchical modeling,
fixed/random effects (could incorporate)

Not an agent-based Bayesian model representing every
individual as a separate node with properties




M Netica - [3node]
@ File Edit Layout Modify Table RNetwork Cases Report Style Window Help

B EHEE | OO0 @& N | X o 1 3Bz 20| F » ® 22 § |2 |
-~
Outbreak_Likelihood
true 41.4 -
false 58.6
Syndromic_Anomaly Measure Diagnostic_Anomaly_ Measure
true 100 E— true 20.8
false oy false 79.2
~
< >

For technical approach description, see:
Burkom H, Ramac-Thomas L, Babin S, Holtry R, Mnatsakanyan Z, Yund C, 2011:
An integrated approach for fusion of environmental and human health data for
disease surveillance. Statistics in Medicine, 30(5):470-479

[s)s) CLU-U5-UUZ-RevV w



A |[Outbreak occurring
B1 |Syndromic outbreak evidence
B2 |Diagnostic outbreak evidence
Prior Outbreak Pr(A) Pr(~A)
Degree of Belief 0.01 0.99
Conditional Probability Tables| |Degree of Belief Given One Evidence Source
cond Pr(B1)| condPr(~B1)| |Pr(B1,A) [Pr(B1,~A)| Pr(B1)| Pr(AIB1)
A 0.7 0.3 0.00700| 0.00990| 0.01690| 0.41420
Conditional ~A 0.01 0.99
Probability
Tables cond Pr(B2)| cond Pr(~B2) Pr(B2,A) |Pr(B2,~A) Pr(B2)| Pr(A|B2)
A 0.7 0.3 0.00700| 0.00099| 0.00799| 0.87610
~A 0.001 0.999
. - Pr(~A,B1,B2) 0.00001
Given ;‘wo Evidence Pr(B1.B2) 0.00491
ources Pr(A|B1,B2) 0.99798

6-Nov-14

CLO-05-002-RevV




\

Severity-Related
Evidence Subnetwork

Severe_Outbreak
True 10.0 :
1
False 90.0
0.4 £ 0.24
PDTS_Ind Outbreak
Extreme 2.28 True 1.1
mRed 2.68 -
mYel 2.71 False 86.9
Yellow 4.46 0.406 * 0.25
Green 87.9 /
Lab_Synd_Ind
Extreme 0.82 E E E
mRed 0.66 o
mYel 0.52 E E E
Yellow 11.2 HY Ha Bl
Green 86.8

CAPER_Alert

True

CAPER_Synd_ICD

False

3.81 :
96.2

Extreme .020 E
mRed 1.14 :
mYel 0.80 i
Yellow 3.06 i
Green 95.0

0.369 £ 0.22

CAPER_Synd_CC

Extreme 009 E
mRed 071 E
mYel 1.02 i
Yellow 1.39 :
Green 97.5

CAPER_Synd_Age
S Extreme 10.1
e mRed 29.0
E E mYel 5.68
e Yellow 26.5
JEs Green 28.8




Outbreak_Sev

Lab_Gen_Sev

True 5.00 - E - Extreme 0.72
False 95.0 » mRed 0.89
0.375 + 0.23 mYel 1.36
Yellow 10.7
\' Green 86.3
CAPER_Sev_SIQ
CAPER_Severity_Indicator Extreme 0.20
True 4.26 | | MRed 0.36
False 95.7 mYel 0.41
0.371£0.22 Yellow 0.39
Green 98.6

/

CAPER_Sev_AdmitOrDied

CAPER_Sev_EscCare

Extreme
mRed
mYel

Extreme .018
mRed .079
mYel 0.24
Yellow 0.32
Green 99.3

Yellow
Green

0.16
.069
0.21
.019
99.5

CAPER_Sev_EM

Extreme
mRed
mYel
Yellow
Green

072
0.86
0.74
3.89
94.4




Network structures: mainly heuristic, based on guidance from
medical epidemiologist

Conditional probability tables for each node: optimized to yield
desired degree of concern for canonical input state combinations

— dependent on input from epidemiologist domain experts
Calibration: multivariate search to produce combination of
thresholds for indicator algorithm states and for network decision

nodes
— detect all known events with highest decision node odds ratios

Validation:
— checked performance on 30 known health events,

— 10-fold cross-validation based on undocumented, data-derived
events
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Cumulative ILI Alerting: 10Jan2007 - 29S5ep2010

289 Facilities

50 Largest Facilities

(3.75 yrs)
mean mean days mean days
ILI Fusion Network and Main sum of - sum of B
. alerts/ day: betw. alerts betw. alerts
Indicator Streams .. |all alerts - all alerts .
all facilities per facility per facility
CAPER ICD-9 Syndrome 6.9 9018 41.7 2997 21.7
. CAPER Chief Complaint Syndrome 7.8 10145 37.0 2181 29.8
General Indicator
CAPER Age<18 6.1 7914 47.5 1688 38.5
Data Streams -

Syndromic Lab Test Order Group 7.0 9095 41.3 1902 34.2
Syndromic Prescription Group 7.1 9209 40.8 1966 33.1
CAPER: Admitted/Died 0.6 743 505.7 239 272.0
CAPER: Complex E/M Codes 6.1 7965 47.2 2099 31.0
Severity-related |CAPER: Escalated Care 9.7 12587 29.8 2971 21.9
Indicators CAPER: Sick-in-quarters 9.9 12911 29.1 3064 21.2
Lab Tests/General Severity 2.3 2927 128.4 692 93.9
All Severity-Related Indicators 28.6 37133 10.1 9065 7.2
Influenza Indicator|Influenza Antivirals 7.1 9247 40.6 1440 45.1
Data Streams |Positive Influenza Lab Tests 0.6 835 4499 289 224.9
All Streams All Data Indicators 71.2 92596 41| 21528 3.0
. General Outbreak Fusion 2.5 3239 116.0 937 69.4

Fusion Network - -
.. Severity-Related Outbreak Fusion 0.8 1014 370.5 322 201.9

Decision Nodes -

Influenza Outbreak Fusion 0.3 432 869.7 158 411.4




Outputs for Reported ILI Events

Odds Ratios for Reported ILI Events Indicator Streams Fusion Decision Nodes
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| DateofFirst | AlertingLag | |\ | [ . on | Fusion/icD
. Date of First ICD (days) i
Nr. |Syndrome Facility . . indicator | Network | Same Day
Fusion Alert Algorithm +: ICD first, .
alert first | alert first | Alerting
Alert -: fusion first

1 Il 1/4/2008| No ICD alert| (fusion only) 0 1 0
2 ILI 2/3/2008 2/18/2008 -15 0 1 0
3 ILI 7/6/2009 7/7/2009 -1 0 1 0
4 ILl 2/15/2009|  2/15/2009 0 0 0 1
5 L 7/8/2009 7/5/2009 3 1 0 0
6 ILI 10/8/2009 9/28/2009 10 1 0 0
7 ILI 2/1/2008 1/6/2008 26 1 0 0
ILI Events 3 3 1

8 FEVER 5/1/2007 5/3/2007 -2 0 1 0
9 FEVER 6/21/2007 6/21/2007 0 0 0 1
10 FEVER 7/6/2009 7/6/2009 0 0 0 1
11 FEVER 3/17/2009 3/16/2009 1 1 0 0
12 FEVER 1/31/2008 1/29/2008 2 1 0 0
13 FEVER 1/14/2008 1/3/2008 11 1 0 0
14 FEVER 10/31/2009| 10/13/2009 18 1 0 0
15 FEVER 2/1/2008 1/9/2008 23 1 0 0
Fever Events 5 1 2

16 Gl 1/19/2010 1/26/2010 -7 0 1 0
17 Gl 1/20/2010 1/25/2010 -5 0 1 0
18 Gl 1/9/2010 1/12/2010 -3 0 1 0
19 Gl 3/10/2010 3/10/2010 0 0 0 1
20 Gl 2/22/2010 2/22/2010 0 0 0 1
21 Gl 3/25/2010 3/25/2010 0 0 0 1
22 Gl 2/17/2010 2/17/2010 0 0 0 1
23 Gl 6/12/2009 6/12/2009 0 0 0 1
24 Gl 6/18/2007 6/18/2007 0 0 0 1
25 Gl 1/4/2008 1/4/2008 0 0 0 1
26 Gl 8/7/2009 8/7/2009 0 0 0 1
27 Gl 12/26/2009| 12/26/2009 0 0 0 1
28 Gl 1/26/2010 1/26/2010 0 0 0 1
29 Gl 10/28/2008| 10/27/2008 1 1 0 0
30 Gl 11/15/2007| 11/13/2007 2 1 0 0

Gl Events 2 3 10

All Events 10 7 13




“Why should you believe me?”
* Why believe that sensmwty to a few dozen historical events

promises sensitivity to future events? How to get
acceptance?

* Burden of proof is discipline-specific
— Public health epidemiology
e authentic outbreak effects difficult to ascertain in data
* much more difficult in multivariate data
— Computer science/data mining
* Simulations widely used, highly developed, but problematic
* Relative strength of signal, timing across datasets




Data-derived
Event Sets

Training

Training

Training

Training

Each Subset
Extracted as
Test Set

Training

\ /—

>

Test

Training

Training

Training

Training

Unreported “events” derived from 3.75 years

of data from 289 facilities
e Corroboration in syndromic, clinical data
* 101 events for Fever, 73 for Gl, 128 for ILI

Events partitioned into 10 subsets of facilities

Ten sensitivity tests: one subset removed
e Other 9 subsets pooled for training
e Optimal combination of thresholds found
* Network with optimal thresholds applied to test
subset
RESULTS: 95-99% of extracted “events” detected for
each syndrome-specific Bayesian Network




ummary

Cross-validation method supports use of Bayesian Network
fusion approach to combine multiple data sources for
prospective alerting

Learning to combine historical data analysis with knowledge of
experienced medical epis

Next step: application to true real-time alerting
Essential for realization of fusion capability

— Training

— Visualization

— Integration with other surveillance tools




- ~lecnnicd dlienges ,
Difficulty of insufficient truth data, especially Gutbreak effects in

multiple indicators:
— Relative timing, relative degree of effects in different data??

At what level and consistency is a purely syndromic signal worthy of

investigation?
All data sources contaminated in some way
— Challenge to extract meaningful, representative indicators

— Need right balance between granular analysis and robust data
behavior

Expert elicitation problem
— Judgment of medical epidemiologists
— Extrapolation to all state combinations
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Summary remarks

Marianne Frisén
University of Gothenburg



Detection of outbreak of health threat.

Enhancement by use of multiple sources.



Relations between different variables are
examined and utilized:

Combination of evidence from sources of different
kinds (health and environment)

versus

Optimal combination of data at a time lag between
incidence 1n different geographical areas



Inferential approach

Bayes —Summarize different kinds of information into a
measure of the probability that there 1s a threat.

versus

Frequentistic - Good properties in the long run



Health threat

Influenza Waterborne disease
Increasing Worse than baseline
Data summarized over

_ Data evaluated
time separately at each time



Combine information

 Qutbreak alarm  Epidemiologic experience

e Visualization



Upcoming ISDS Events

 Webinar: November 12, 2014 — Planning for the
ICD-10 Transition

* November 7, 2014 — Meaningful Use Communtiy
Call

* Webinar: November 20, 2014 - Animal Surveillance
in the US






