A Scan Statistic based on Anscombe's Variance Stabilization Transformation

Kunihiko Takahashi, Toshiro Tango

Department of Technology Assessment and Biostatistics National Institute of Public Health, Japan

OBJECTIVE

This paper proposes a new scan statistic which detects disease clusters more accurately than that based on the likelihood ratio.

BACKGROUND

The circular spatial scan statistic proposed by Kulldorff and Nagarwalla [1] has been widely used along with SaTScan software for cluster detection. To detect arbitrarily shaped clusters which cannot be detected by the circular scan statistic, Duczmal and Assunção [2] and Tango and Takahashi [3] have proposed different scan statistics. All of these tests are based on maximizing the likelihood ratio statistic $\lambda(Z)$ for each window Z. However, Tango and Takahashi [3] have shown examples in which Duczmal and Assunção's procedure detected quite large and peculiar shaped clusters that had the largest likelihood ratio λ among the three scan statistics applied. It cast a doubt on the validity of the model selection based on maximizing $\lambda(Z)$.

METHODS

One of reasons for detecting undesirable clusters is that $\lambda(Z)$ is derived only from the observed number of cases n(Z) and the expected number $\mu(Z)$ under the null hypothesis H_0 of no clustering. $\lambda(Z)$ ignores the variability of the relative risks of regions included in Z. Then we propose an alternative scan statistic that can take such variability into account.

Assume that, under H_0 , the observed number of cases X_i is a Poisson random variable with expected value μ_i in each region i = 1, 2, ..., m. Then, let us apply Anscombe[4]'s variance stabilization transformation:

$$Y_i = 2\sqrt{X_i + (3/8)} - 2\sqrt{\mu_i + (1/8)},$$

where $E(Y_i) = 0$ and $Var(Y_i) = 1$ under H_0 . For any Z, let $\bar{y}(Z)$ and $\bar{y}(Z^c)$ be the means of y_i within Z and outside, respectively. Then, we propose a new scan statistic T as

$$T = \max_{Z \in \mathcal{Z}} \{ \bar{y}(Z) - \bar{y}(Z^c) / \sqrt{(1/l(Z)) + (1/l(Z^c))} \},$$

where l() denotes the number of regions included therein. The window Z^* which attains the maximum T is defined as the most likely cluster (MLC). In the same manner as Kulldorff's scan statistic, Monte Carlo testing is required for the distribution of T under H_0 .

RESULTS

Several scenarios of simulation were used to illustrate the proposed test statistic T with scanning methods of the circular [1] and the flexible [3]. The bivariate power distribution proposed by [3] shows that T has shorter tails and, consequently, better ability of pinpointing the assumed hot-spot cluster compared with the likelihood ratio.

CONCLUSIONS

The proposed scan statistic can detect disease clusters more accurately than that based on the likelihood ratio.

REFERENCES

 Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. *Statistics in Medicine* 1995; 14:799– 810.

[2] Duczmal L, Assunção R. A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. *Computational Statistics & Data Analysis* 2004; **45**:269–286.

[3] Tango T, Takahashi T. A flexibly shaped spatial scan statistic for detecting clusters. *International Journal of Health Geographics* 2005; **4**:11.

[4] Anscombe F. J. The transformation of Poisson, binomial and negative-binomial data. *Biometrika* 1948; **35**:246–254.

Table. Bivariate power distributions $P(l, s) \times 1000$ of the likelihood ratio statistic λ and the proposed statistic T using the flexible scanning method (K = 15) for the hot-spot cluster **A** with $s^* = 3$ regions, where l is the length of significant MLC, s is the number of regions identified out of the assumed true cluster (see details [3]). Total number of cases is set to be 500 in the entire m = 113 regions (total number of population is 19,803,618), and relative risk in the hot-spot is set to be 3.0. Nominal α -lebel is set as 0.05 and 1000 trials are carried out. Lines of s = 0, 1, 2 whose all the cells have zero power are not shown. The mark "*" is the powers of accurate detection.

